Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phylogenetic analysis of ABCG subfamily proteins in plants: functional clustering and coevolution with ABCGs of pathogens.

Identifieur interne : 000426 ( Main/Exploration ); précédent : 000425; suivant : 000427

Phylogenetic analysis of ABCG subfamily proteins in plants: functional clustering and coevolution with ABCGs of pathogens.

Auteurs : Chung Hyun Cho [Corée du Sud] ; Sunghoon Jang [Corée du Sud] ; Bae Young Choi [Corée du Sud] ; Daewoong Hong [Corée du Sud] ; Du Seok Choi [Corée du Sud] ; Sera Choi [Corée du Sud] ; Haseong Kim [Corée du Sud] ; Seong Kyu Han [Corée du Sud] ; Sanguk Kim [Corée du Sud] ; Min-Sung Kim [Corée du Sud] ; Michael Palmgren [Danemark] ; Kee Hoon Sohn [Corée du Sud] ; Hwan Su Yoon [Corée du Sud] ; Youngsook Lee [Corée du Sud]

Source :

RBID : pubmed:31828796

Abstract

ABCG subfamily proteins are highly enriched in terrestrial plants. Many of these proteins secrete secondary metabolites that repel or inhibit pathogens. To establish why the ABCG subfamily proteins proliferated extensively during evolution, we constructed phylogenetic trees from a broad range of eukaryotic organisms. ABCG proteins were massively duplicated in land plants and in oomycetes, a group of agronomically important plant pathogens, which prompted us to hypothesize that plant and pathogen ABCGs coevolved. Supporting this hypothesis, full-size ABCGs in host plants (Arabidopsis thaliana and Glycine max) and their pathogens (Hyaloperonospora arabidopsidis and Phytophthora sojae, respectively) had similar divergence times and patterns. Furthermore, generalist pathogens with broad ranges of host plants have diversified more ABCGs than their specialist counterparts. The hypothesis was further tested using an example pair of ABCGs that first diverged during multiplication in a host plant and its pathogen: AtABCG31 of A. thaliana and HpaP802307 of H. arabidopsidis. AtABCG31 expression was activated following infection with H. arabidopsidis, and disrupting AtABCG31 led to increased susceptibility to H. arabidopsidis. Together, our results suggest that ABCG genes in plants and their oomycete pathogens coevolved in an arms race, to extrude secondary metabolites involved in the plant's defense response against pathogens.

DOI: 10.1111/ppl.13052
PubMed: 31828796


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phylogenetic analysis of ABCG subfamily proteins in plants: functional clustering and coevolution with ABCGs of pathogens.</title>
<author>
<name sortKey="Cho, Chung Hyun" sort="Cho, Chung Hyun" uniqKey="Cho C" first="Chung Hyun" last="Cho">Chung Hyun Cho</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biological Sciences, Sungkyunkwan University, Suwon</wicri:regionArea>
<wicri:noRegion>Suwon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jang, Sunghoon" sort="Jang, Sunghoon" uniqKey="Jang S" first="Sunghoon" last="Jang">Sunghoon Jang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Choi, Bae Young" sort="Choi, Bae Young" uniqKey="Choi B" first="Bae Young" last="Choi">Bae Young Choi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hong, Daewoong" sort="Hong, Daewoong" uniqKey="Hong D" first="Daewoong" last="Hong">Daewoong Hong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Choi, Du Seok" sort="Choi, Du Seok" uniqKey="Choi D" first="Du Seok" last="Choi">Du Seok Choi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Choi, Sera" sort="Choi, Sera" uniqKey="Choi S" first="Sera" last="Choi">Sera Choi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Haseong" sort="Kim, Haseong" uniqKey="Kim H" first="Haseong" last="Kim">Haseong Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Seong Kyu" sort="Han, Seong Kyu" uniqKey="Han S" first="Seong Kyu" last="Han">Seong Kyu Han</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Sanguk" sort="Kim, Sanguk" uniqKey="Kim S" first="Sanguk" last="Kim">Sanguk Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Min Sung" sort="Kim, Min Sung" uniqKey="Kim M" first="Min-Sung" last="Kim">Min-Sung Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Palmgren, Michael" sort="Palmgren, Michael" uniqKey="Palmgren M" first="Michael" last="Palmgren">Michael Palmgren</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Science, University of Copenhagen, DK-1871, Frederiksberg, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Plant and Environmental Science, University of Copenhagen, DK-1871, Frederiksberg</wicri:regionArea>
<wicri:noRegion>Frederiksberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sohn, Kee Hoon" sort="Sohn, Kee Hoon" uniqKey="Sohn K" first="Kee Hoon" last="Sohn">Kee Hoon Sohn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoon, Hwan Su" sort="Yoon, Hwan Su" uniqKey="Yoon H" first="Hwan Su" last="Yoon">Hwan Su Yoon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biological Sciences, Sungkyunkwan University, Suwon</wicri:regionArea>
<wicri:noRegion>Suwon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Youngsook" sort="Lee, Youngsook" uniqKey="Lee Y" first="Youngsook" last="Lee">Youngsook Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31828796</idno>
<idno type="pmid">31828796</idno>
<idno type="doi">10.1111/ppl.13052</idno>
<idno type="wicri:Area/Main/Corpus">000325</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000325</idno>
<idno type="wicri:Area/Main/Curation">000325</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000325</idno>
<idno type="wicri:Area/Main/Exploration">000325</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phylogenetic analysis of ABCG subfamily proteins in plants: functional clustering and coevolution with ABCGs of pathogens.</title>
<author>
<name sortKey="Cho, Chung Hyun" sort="Cho, Chung Hyun" uniqKey="Cho C" first="Chung Hyun" last="Cho">Chung Hyun Cho</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biological Sciences, Sungkyunkwan University, Suwon</wicri:regionArea>
<wicri:noRegion>Suwon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jang, Sunghoon" sort="Jang, Sunghoon" uniqKey="Jang S" first="Sunghoon" last="Jang">Sunghoon Jang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Choi, Bae Young" sort="Choi, Bae Young" uniqKey="Choi B" first="Bae Young" last="Choi">Bae Young Choi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hong, Daewoong" sort="Hong, Daewoong" uniqKey="Hong D" first="Daewoong" last="Hong">Daewoong Hong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Choi, Du Seok" sort="Choi, Du Seok" uniqKey="Choi D" first="Du Seok" last="Choi">Du Seok Choi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Choi, Sera" sort="Choi, Sera" uniqKey="Choi S" first="Sera" last="Choi">Sera Choi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Haseong" sort="Kim, Haseong" uniqKey="Kim H" first="Haseong" last="Kim">Haseong Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Seong Kyu" sort="Han, Seong Kyu" uniqKey="Han S" first="Seong Kyu" last="Han">Seong Kyu Han</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Sanguk" sort="Kim, Sanguk" uniqKey="Kim S" first="Sanguk" last="Kim">Sanguk Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Min Sung" sort="Kim, Min Sung" uniqKey="Kim M" first="Min-Sung" last="Kim">Min-Sung Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Palmgren, Michael" sort="Palmgren, Michael" uniqKey="Palmgren M" first="Michael" last="Palmgren">Michael Palmgren</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Science, University of Copenhagen, DK-1871, Frederiksberg, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Plant and Environmental Science, University of Copenhagen, DK-1871, Frederiksberg</wicri:regionArea>
<wicri:noRegion>Frederiksberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sohn, Kee Hoon" sort="Sohn, Kee Hoon" uniqKey="Sohn K" first="Kee Hoon" last="Sohn">Kee Hoon Sohn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoon, Hwan Su" sort="Yoon, Hwan Su" uniqKey="Yoon H" first="Hwan Su" last="Yoon">Hwan Su Yoon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Biological Sciences, Sungkyunkwan University, Suwon</wicri:regionArea>
<wicri:noRegion>Suwon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Youngsook" sort="Lee, Youngsook" uniqKey="Lee Y" first="Youngsook" last="Lee">Youngsook Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673</wicri:regionArea>
<wicri:noRegion>37673</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Physiologia plantarum</title>
<idno type="eISSN">1399-3054</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">ABCG subfamily proteins are highly enriched in terrestrial plants. Many of these proteins secrete secondary metabolites that repel or inhibit pathogens. To establish why the ABCG subfamily proteins proliferated extensively during evolution, we constructed phylogenetic trees from a broad range of eukaryotic organisms. ABCG proteins were massively duplicated in land plants and in oomycetes, a group of agronomically important plant pathogens, which prompted us to hypothesize that plant and pathogen ABCGs coevolved. Supporting this hypothesis, full-size ABCGs in host plants (Arabidopsis thaliana and Glycine max) and their pathogens (Hyaloperonospora arabidopsidis and Phytophthora sojae, respectively) had similar divergence times and patterns. Furthermore, generalist pathogens with broad ranges of host plants have diversified more ABCGs than their specialist counterparts. The hypothesis was further tested using an example pair of ABCGs that first diverged during multiplication in a host plant and its pathogen: AtABCG31 of A. thaliana and HpaP802307 of H. arabidopsidis. AtABCG31 expression was activated following infection with H. arabidopsidis, and disrupting AtABCG31 led to increased susceptibility to H. arabidopsidis. Together, our results suggest that ABCG genes in plants and their oomycete pathogens coevolved in an arms race, to extrude secondary metabolites involved in the plant's defense response against pathogens.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">31828796</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1399-3054</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2019</Year>
<Month>Dec</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Physiologia plantarum</Title>
<ISOAbbreviation>Physiol Plant</ISOAbbreviation>
</Journal>
<ArticleTitle>Phylogenetic analysis of ABCG subfamily proteins in plants: functional clustering and coevolution with ABCGs of pathogens.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/ppl.13052</ELocationID>
<Abstract>
<AbstractText>ABCG subfamily proteins are highly enriched in terrestrial plants. Many of these proteins secrete secondary metabolites that repel or inhibit pathogens. To establish why the ABCG subfamily proteins proliferated extensively during evolution, we constructed phylogenetic trees from a broad range of eukaryotic organisms. ABCG proteins were massively duplicated in land plants and in oomycetes, a group of agronomically important plant pathogens, which prompted us to hypothesize that plant and pathogen ABCGs coevolved. Supporting this hypothesis, full-size ABCGs in host plants (Arabidopsis thaliana and Glycine max) and their pathogens (Hyaloperonospora arabidopsidis and Phytophthora sojae, respectively) had similar divergence times and patterns. Furthermore, generalist pathogens with broad ranges of host plants have diversified more ABCGs than their specialist counterparts. The hypothesis was further tested using an example pair of ABCGs that first diverged during multiplication in a host plant and its pathogen: AtABCG31 of A. thaliana and HpaP802307 of H. arabidopsidis. AtABCG31 expression was activated following infection with H. arabidopsidis, and disrupting AtABCG31 led to increased susceptibility to H. arabidopsidis. Together, our results suggest that ABCG genes in plants and their oomycete pathogens coevolved in an arms race, to extrude secondary metabolites involved in the plant's defense response against pathogens.</AbstractText>
<CopyrightInformation>© 2019 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cho</LastName>
<ForeName>Chung Hyun</ForeName>
<Initials>CH</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jang</LastName>
<ForeName>Sunghoon</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Choi</LastName>
<ForeName>Bae Young</ForeName>
<Initials>BY</Initials>
<AffiliationInfo>
<Affiliation>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hong</LastName>
<ForeName>Daewoong</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Choi</LastName>
<ForeName>Du Seok</ForeName>
<Initials>DS</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Choi</LastName>
<ForeName>Sera</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Haseong</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Seong Kyu</ForeName>
<Initials>SK</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Sanguk</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Min-Sung</ForeName>
<Initials>MS</Initials>
<AffiliationInfo>
<Affiliation>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Palmgren</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9982-6114</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant and Environmental Science, University of Copenhagen, DK-1871, Frederiksberg, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sohn</LastName>
<ForeName>Kee Hoon</ForeName>
<Initials>KH</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yoon</LastName>
<ForeName>Hwan Su</ForeName>
<Initials>HS</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-9507-0105</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Youngsook</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-5808-9613</Identifier>
<AffiliationInfo>
<Affiliation>Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, Korea.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CF18-111</GrantID>
<Agency>Carlsbergfondet</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Innovationsfonden</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2017R1A2B3001923</GrantID>
<Agency>National Research Foundation of Korea</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2018R1A2A1A05018173</GrantID>
<Agency>National Research Foundation of Korea</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2018R1A5A1023599</GrantID>
<Agency>National Research Foundation of Korea</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>PJ01389003</GrantID>
<Agency>Next-generation BioGreen21 Program</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>20180430</GrantID>
<Agency>the Collaborative Genome Program of the Korea Institute of Marine Science and Technology Promotion (KIMST)</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Denmark</Country>
<MedlineTA>Physiol Plant</MedlineTA>
<NlmUniqueID>1256322</NlmUniqueID>
<ISSNLinking>0031-9317</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31828796</ArticleId>
<ArticleId IdType="doi">10.1111/ppl.13052</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 95: 10306-10311</Citation>
</Reference>
<Reference>
<Citation>Alam A, Kowal J, Broude E, Roninson I, Locher KP (2019) Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science 363: 753-756</Citation>
</Reference>
<Reference>
<Citation>Albà MM, Castresana J (2004) Inverse relationship between evolutionary rate and age of mammalian genes. Mol Biol Evol 22: 598-606</Citation>
</Reference>
<Reference>
<Citation>Allen RL, Bittner-Eddy PD, Grenville-Briggs LJ, Meitz JC, Rehmany AP, Rose LE, Beynon JL (2004) Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science 306: 1957-1960</Citation>
</Reference>
<Reference>
<Citation>Andolfo G, Ruocco M, Di Donato A, Frusciante L, Lorito M, Scala F, Ercolano MR (2015) Genetic variability and evolutionary diversification of membrane ABC transporters in plants. BMC Plant Biol 15: 51</Citation>
</Reference>
<Reference>
<Citation>Arbona V, Gomez-Cadenas A (2016) Metabolomics of disease resistance in crops. Curr Issues Mol Biol 19: 13-30</Citation>
</Reference>
<Reference>
<Citation>Asai S, Shirasu K, Jones JDG (2015) Hyaloperonospora arabidopsidis (downy mildew) infection assay in Arabidopsis. Bio Protoc 5: e1627</Citation>
</Reference>
<Reference>
<Citation>Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R, Kunst L, Wu X, Yephremov A, Samuels L (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52: 485-498</Citation>
</Reference>
<Reference>
<Citation>Campbell EJ, Schenk PM, Kazan K, Penninckx IA, Anderson JP, Maclean DJ, Cammue BP, Ebert PR, Manners JM (2003) Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol 133: 1272-1284</Citation>
</Reference>
<Reference>
<Citation>Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972-1973</Citation>
</Reference>
<Reference>
<Citation>Chen W, Schneider RW, Hoy JW (1992) Taxonomic and phylogenetic analyses of ten Pythium species using isozyme polymorphisms. Phytopathology 82: 1234-1234</Citation>
</Reference>
<Reference>
<Citation>Choi H, Ohyama K, Kim YY, Jin JY, Lee SB, Yamaoka Y, Muranaka T, Suh MC, Fujioka S, Lee Y (2014) The role of Arabidopsis ABCG9 and ABCG31 ATP binding cassette transporters in pollen fitness and the deposition of steryl glycosides on the pollen coat. Plant Cell 26: 310-324</Citation>
</Reference>
<Reference>
<Citation>Crouzet J, Roland J, Peeters E, Trombik T, Ducos E, Nader J, Boutry M (2013) NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum, is involved in diterpene transport. Plant Mol Biol 82: 181-192</Citation>
</Reference>
<Reference>
<Citation>Dean M, Annilo T (2005) Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet 6: 123-142</Citation>
</Reference>
<Reference>
<Citation>Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L, Ebert D, De Meester L (2007) Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450: 870-873</Citation>
</Reference>
<Reference>
<Citation>Dick MW (2001) Straminipilous Fungi: Systematics of the Peronosporomycetes Including Accounts of the Marine Straminipilous Protists, the Plasmodiophorids and Similar Organisms. Kluwer Academic Publishers, Dordrecht</Citation>
</Reference>
<Reference>
<Citation>Diéguez-Uribeondo J, Fregeneda-Grandes JM, Cerenius L, Pérez-Iniesta E, Aller-Gancedo JM, Tellería MT, Söderhäll K, Martín MP (2007) Re-evaluation of the enigmatic species complex Saprolegnia diclina-Saprolegnia parasitica based on morphological, physiological and molecular data. Fungal Genet Biol 44: 585-601</Citation>
</Reference>
<Reference>
<Citation>Diéguez-Uribeondo J, García MA, Cerenius L, Kozubíková E, Ballesteros I, Windels C, Weiland J, Kator H, Söderhäll K, Martín MP (2009) Phylogenetic relationships among plant and animal parasites, and saprotrophs in Aphanomyces (Oomycetes). Fungal Genet Biol 46: 365-376</Citation>
</Reference>
<Reference>
<Citation>Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: 1969-1973</Citation>
</Reference>
<Reference>
<Citation>Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G, Platts AE, Heckel DG, Der JP, Wafula EK, Tang M, Hofberger JA, Smithson A, Hall JC, Blanchette M, Bureau TE,Wright SI, dePamphilis CW, Eric Schranz M, Barker MS, Conant GC, Wahlberg N,Vogel H, Pires JC, Wheat CW (2015) The butterfly plant arms-race escalated by gene and genome duplications. Proc Natl Acad Sci USA 112: 8362-8366</Citation>
</Reference>
<Reference>
<Citation>Erwin DC, Ribeiro OK (1996) Phytophthora Diseases Worldwide. American Phytopathological Society Press, St. Paul</Citation>
</Reference>
<Reference>
<Citation>Gao Y, Wang W, Zhang T, Gong Z, Zhao H, Han G-Z (2018) Out of water: the origin and early diversification of plant R genes. Plant Physiol 177: 82-89</Citation>
</Reference>
<Reference>
<Citation>Gernhard T (2008) The conditioned reconstructed process. J Theor Biol 253: 769-778</Citation>
</Reference>
<Reference>
<Citation>Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2011) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40: D1178-D1186</Citation>
</Reference>
<Reference>
<Citation>Haldane JBS (1949) Disease and evolution. Ric Sci 19: 68-76</Citation>
</Reference>
<Reference>
<Citation>Hwang JU, Song WY, Hong D, Ko D, Yamaoka Y, Jang S, Yim S, Lee E, Khare D, Kim K, Palmgren M, Yoon Hwan S, Martinoia E, Lee Y (2016) Plant ABC transporters enable many unique aspects of a terrestrial plant's lifestyle. Mol Plant 9: 338-355</Citation>
</Reference>
<Reference>
<Citation>Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14: 587</Citation>
</Reference>
<Reference>
<Citation>Kamoun S (2003) Molecular genetics of pathogenic oomycetes. Eukaryot Cell 2: 191-199</Citation>
</Reference>
<Reference>
<Citation>Kamoun S, Furzer O, Jones JDG, Judelson HS, Ali GS, Dalio RJD, Roy SG, Schena L, Zambounis A, Panabières F, Cahill D, Ruocco M, Figueiredo A, Chen X-R, Hulvey J, Stam R,Lamour K, Gijzen M, Tyler BM, Grünwald NJ, Mukhtar MS, Tomé DFA, Tör M, Van DenAckerveken G, McDowell J, Daayf F, Fry WE, Lindqvist-Kreuze H, Meijer HJG,Petre B, Ristaino J, Yoshida K, Birch PRJ, Govers F (2015) The top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol 16: 413-434</Citation>
</Reference>
<Reference>
<Citation>Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci USA 107: 2355-2360</Citation>
</Reference>
<Reference>
<Citation>Kang J, Yim S, Choi H, Kim A, Lee KP, Lopez-Molina L, Martinoia E, Lee Y (2015) Abscisic acid transporters cooperate to control seed germination. Nat Commun 6: 8113</Citation>
</Reference>
<Reference>
<Citation>Karasov TL, Horton MW, Bergelson J (2014) Genomic variability as a driver of plant-pathogen coevolution? Curr Opin Plant Biol 18: 24-30</Citation>
</Reference>
<Reference>
<Citation>Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772-780</Citation>
</Reference>
<Reference>
<Citation>Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA,Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P, Dyhrman ST, Edvardsen B, Gates RD, Gobler CJ, Greenwood SJ, Guida SM, Jacobi JL, Jakobsen KS, James ER, Jenkins B, John U, Johnson MD, Juhl AR, Kamp A, Katz LA, Kiene R,Kudryavtsev A, Leander BS, Lin S, Lovejoy C, Lynn D, Marchetti A, McManus G,Nedelcu AM, Menden-Deuer S, Miceli C, Mock T, Montresor M, Moran MA, Murray S,Nadathur G, Nagai S, Ngam PB, Palenik B, Pawlowski J, Petroni G, Piganeau G,Posewitz MC, Rengefors K, Romano G, Rumpho ME, Rynearson T, Schilling KB,Schroeder DC, Simpson AGB, Slamovits CH, Smith DR, Smith GJ, Smith SR, SosikHM, Stief P, Theriot E, Twary SN, Umale PE, Vaulot D, Wawrik B, Wheeler GL,Wilson WH, Xu Y, Zingone A, Worden AZ (2014) The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12: 1-6</Citation>
</Reference>
<Reference>
<Citation>Khare D, Choi H, Huh SU, Bassin B, Kim J, Martinoia E, Sohn KH, Paek KH, Lee Y (2017) Arabidopsis ABCG34 contributes to defense against necrotrophic pathogens by mediating the secretion of camalexin. Proc Natl Acad Sci USA 114: E5712-E5720</Citation>
</Reference>
<Reference>
<Citation>Khunweeraphong N, Stockner T, Kuchler K (2017) The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion. Sci Rep 7: 13767</Citation>
</Reference>
<Reference>
<Citation>Kim Y, Chen J (2018) Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science 359: 915-919</Citation>
</Reference>
<Reference>
<Citation>Ko D, Kang J, Kiba T, Park J, Kojima M, Do J, Kim KY, Kwon M, Endler A, Song WY, Martinoia E, Sakakibara H, Lee Y (2014) Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci USA 111: 7150-7155</Citation>
</Reference>
<Reference>
<Citation>Kobae Y, Sekino T, Yoshioka H, Nakagawa T, Martinoia E, Maeshima M (2006) Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47: 309-318</Citation>
</Reference>
<Reference>
<Citation>Kovalchuk A, Driessen AJ (2010) Phylogenetic analysis of fungal ABC transporters. BMC Genomics 11: 177</Citation>
</Reference>
<Reference>
<Citation>Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci USA 107: 2361-2366</Citation>
</Reference>
<Reference>
<Citation>Kushalappa AC, Gunnaiah R (2013) Metabolo-proteomics to discover plant biotic stress resistance genes. Trends Plant Sci 18: 522-531</Citation>
</Reference>
<Reference>
<Citation>Lane TS, Rempe CS, Davitt J, Staton ME, Peng Y, Soltis DE, Melkonian M, Deyholos M, Leebens-Mack JH, Chase M, Rothfels CJ, Stevenson D, Graham SW, Yu J, Liu T, Pires JC, Edger PP, Zhang Y, Xie Y, Zhu Y, Carpenter E, Wong GK-S, Stewart CN (2016) Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology. BMC Biotechnol 16: 47</Citation>
</Reference>
<Reference>
<Citation>Lee JY, Kinch LN, Borek DM, Wang J, Wang J, Urbatsch IL, Xie XS, Grishin NV, Cohen JC, Otwinowski Z, Hobbs HH, Rosenbaum DM (2016) Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 533: 561-564</Citation>
</Reference>
<Reference>
<Citation>Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, de Clerck O (2012) Phylogeny and molecular evolution of the green algae. CRC Crit Rev Plant Sci 31: 1-46</Citation>
</Reference>
<Reference>
<Citation>Locher KP (2016) Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol 23: 487</Citation>
</Reference>
<Reference>
<Citation>Makkonen J, Jussila J, Kokko H (2012) The diversity of the pathogenic oomycete (Aphanomyces astaci) chitinase genes within the genotypes indicate adaptation to its hosts. Fungal Genet Biol 49: 635-642</Citation>
</Reference>
<Reference>
<Citation>Manolaridis I, Jackson SM, Taylor NMI, Kowal J, Stahlberg H, Locher KP (2018) Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature 563: 426-430</Citation>
</Reference>
<Reference>
<Citation>Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F,Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N,Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39: D225-D229</Citation>
</Reference>
<Reference>
<Citation>Mauricio R, Stahl EA, Korves T, Tian D, Kreitman M, Bergelson J (2003) Natural selection for polymorphism in the disease resistance gene Rps2 of Arabidopsis thaliana. Genetics 163: 735-746</Citation>
</Reference>
<Reference>
<Citation>McMullan M, Gardiner A, Bailey K, Kemen E, Ward BJ, Cevik V, Robert-Seilaniantz A, Schultz-Larsen T, Balmuth A, Holub E, van Oosterhout C, Jones JDG (2015) Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite. Elife 4: e04550</Citation>
</Reference>
<Reference>
<Citation>Meng Y, Zhang Q, Ding W, Shan W (2014) Phytophthora parasitica: a model oomycete plant pathogen. Mycology 5: 43-51</Citation>
</Reference>
<Reference>
<Citation>Mentewab A, Stewart CN Jr (2005) Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nat Biotechnol 23: 1177-1180</Citation>
</Reference>
<Reference>
<Citation>Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32: 268-274</Citation>
</Reference>
<Reference>
<Citation>Occhipinti A (2013) Plant coevolution: evidences and new challenges. J Plant Interact 8: 188-196</Citation>
</Reference>
<Reference>
<Citation>Ofori PA, Mizuno A, Suzuki M, Martinoia E, Reuscher S, Aoki K, Shibata D, Otagaki S, Matsumoto S, Shiratake K (2018) Genome-wide analysis of ATP binding cassette (ABC) transporters in tomato. PLoS One 13: e0200854</Citation>
</Reference>
<Reference>
<Citation>Parker D, Beckmann M, Zubair H, Enot DP, Caracuel-Rios Z, Overy DP, Snowdon S, Talbot NJ, Draper J (2009) Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. Plant J 59: 723-737</Citation>
</Reference>
<Reference>
<Citation>Quilichini TD, Friedmann MC, Samuels AL, Douglas CJ (2010) ATP-binding cassette transporter G26 (ABCG26) is required for male fertility and pollen exine formation in Arabidopsis thaliana. Plant Physiol 154: 678-690</Citation>
</Reference>
<Reference>
<Citation>Ruzicka K, Strader LC, Bailly A, Yang HB, Blakeslee J, Langowski L, Nejedla E, Fujita H, Itoh H, Syono K, Hejátko J, Gray WM, Martinoia E, Geisler M, Bartel B, Murphy AS, Friml J (2010) Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proc Natl Acad Sci USA 107: 10749-10753</Citation>
</Reference>
<Reference>
<Citation>Sana TR, Fischer S, Wohlgemuth G, Katrekar A, Jung K, Ronald PC, Fiehn O (2010) Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. Metabolomics 6: 451-465</Citation>
</Reference>
<Reference>
<Citation>Shibata Y, Ojika M, Sugiyama A, Yazaki K, Jones DA, Kawakita K, Takemoto D (2016) The full-size ABCG transporters Nb-ABCG1 and Nb-ABCG2 function in pre- and post-invasion defense against Phytophthora infestans in Nicotiana benthamiana. Plant Cell 28: 1163-1181</Citation>
</Reference>
<Reference>
<Citation>Srikant S, Gaudet R (2019) Mechanics and pharmacology of substrate selection and transport by eukaryotic ABC exporters. Nat Struct Mol Biol 26: 792-801</Citation>
</Reference>
<Reference>
<Citation>Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J (1999) Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400: 667</Citation>
</Reference>
<Reference>
<Citation>Stefanato FL, Abou-Mansour E, Buchala A, Kretschmer M, Mosbach A, Hahn M, Bochet CG, Metraux JP, Schoonbeek HJ (2009) The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. Plant J 58: 499-510</Citation>
</Reference>
<Reference>
<Citation>Stein M, Dittgen J, Sánchez-Rodríguez C, Hou B-H, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18: 731-746</Citation>
</Reference>
<Reference>
<Citation>Strader LC, Bartel B (2009) The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Plant Cell 21: 1992-2007</Citation>
</Reference>
<Reference>
<Citation>Stukkens Y, Bultreys A, Grec S, Trombik T, Vanham D, Boutry M (2005) NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiol 139: 341-352</Citation>
</Reference>
<Reference>
<Citation>Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, Locher KP (2017) Structure of the human multidrug transporter ABCG2. Nature 546: 504</Citation>
</Reference>
<Reference>
<Citation>Theodoulou FL, Kerr ID (2015) ABC transporter research: going strong 40 years on. Biochem Soc Trans 43: 1033-1040</Citation>
</Reference>
<Reference>
<Citation>Thines M, Kamoun S (2010) Oomycete-plant coevolution: recent advances and future prospects. Curr Opin Plant Biol 13: 427-433</Citation>
</Reference>
<Reference>
<Citation>Thines M, Choi YJ, Kemen E, Ploch S, Holub EB, Shin HD, Jones JDG (2009) A new species of Albugo parasitic to Arabidopsis thaliana reveals new evolutionary patterns in white blister rusts (Albuginaceae). Persoonia 22: 123-128</Citation>
</Reference>
<Reference>
<Citation>Thomas C, Tampé R (2018) Multifaceted structures and mechanisms of ABC transport systems in health and disease. Curr Opin Struct Biol 51: 116-128</Citation>
</Reference>
<Reference>
<Citation>Thrall PH, Laine A-L, Ravensdale M, Nemri A, Dodds PN, Barrett LG, Burdon JJ (2012) Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecol Lett 15: 425-435</Citation>
</Reference>
<Reference>
<Citation>Tian D, Araki H, Stahl E, Bergelson J, Kreitman M (2002) Signature of balancing selection in Arabidopsis. Proc Natl Acad Sci USA 99: 11525-11530</Citation>
</Reference>
<Reference>
<Citation>Wang Y, Cordewener JH, America AH, Shan W, Bouwmeester K, Govers F (2015) Arabidopsis lectin receptor kinases LecRK-IX.1 and LecRK-IX.2 are functional analogs in regulating Phytophthora resistance and plant cell death. Mol Plant Microbe Interact 28: 1032-1048</Citation>
</Reference>
<Reference>
<Citation>Xiong J, Feng J, Yuan D, Zhou J, Miao W (2015) Tracing the structural evolution of eukaryotic ATP binding cassette transporter superfamily. Sci Rep 5: 16724</Citation>
</Reference>
<Reference>
<Citation>Yadav V, Molina I, Ranathunge K, Castillo IQ, Rothstein SJ, Reed JW (2014) ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis. Plant Cell 26: 3569-3588</Citation>
</Reference>
<Reference>
<Citation>Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics 13: 555-556</Citation>
</Reference>
<Reference>
<Citation>Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580: 1183-1191</Citation>
</Reference>
<Reference>
<Citation>Yim S, Khare D, Kang J, Hwang J-U, Liang W, Martinoia E, Zhang D, Kang B, Lee Y (2016) Postmeiotic development of pollen surface layers requires two Arabidopsis ABCG-type transporters. Plant Cell Rep 35: 1863-1873</Citation>
</Reference>
<Reference>
<Citation>Yu J, Ge J, Heuveling J, Schneider E, Yang M (2015) Structural basis for substrate specificity of an amino acid ABC transporter. Proc Natl Acad Sci USA 112: 5243-5248</Citation>
</Reference>
<Reference>
<Citation>Zhang Z, Li J, Zhao X-Q, Wang J, Wong GK-S, Yu J (2006) KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics 4: 259-263</Citation>
</Reference>
<Reference>
<Citation>Zhang Z, Xiao J, Wu J, Zhang H, Liu G, Wang X, Dai L (2012) ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochem Biophys Res Commun 419: 779-781</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
<li>Danemark</li>
</country>
</list>
<tree>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Cho, Chung Hyun" sort="Cho, Chung Hyun" uniqKey="Cho C" first="Chung Hyun" last="Cho">Chung Hyun Cho</name>
</noRegion>
<name sortKey="Choi, Bae Young" sort="Choi, Bae Young" uniqKey="Choi B" first="Bae Young" last="Choi">Bae Young Choi</name>
<name sortKey="Choi, Du Seok" sort="Choi, Du Seok" uniqKey="Choi D" first="Du Seok" last="Choi">Du Seok Choi</name>
<name sortKey="Choi, Sera" sort="Choi, Sera" uniqKey="Choi S" first="Sera" last="Choi">Sera Choi</name>
<name sortKey="Han, Seong Kyu" sort="Han, Seong Kyu" uniqKey="Han S" first="Seong Kyu" last="Han">Seong Kyu Han</name>
<name sortKey="Hong, Daewoong" sort="Hong, Daewoong" uniqKey="Hong D" first="Daewoong" last="Hong">Daewoong Hong</name>
<name sortKey="Jang, Sunghoon" sort="Jang, Sunghoon" uniqKey="Jang S" first="Sunghoon" last="Jang">Sunghoon Jang</name>
<name sortKey="Kim, Haseong" sort="Kim, Haseong" uniqKey="Kim H" first="Haseong" last="Kim">Haseong Kim</name>
<name sortKey="Kim, Min Sung" sort="Kim, Min Sung" uniqKey="Kim M" first="Min-Sung" last="Kim">Min-Sung Kim</name>
<name sortKey="Kim, Sanguk" sort="Kim, Sanguk" uniqKey="Kim S" first="Sanguk" last="Kim">Sanguk Kim</name>
<name sortKey="Lee, Youngsook" sort="Lee, Youngsook" uniqKey="Lee Y" first="Youngsook" last="Lee">Youngsook Lee</name>
<name sortKey="Lee, Youngsook" sort="Lee, Youngsook" uniqKey="Lee Y" first="Youngsook" last="Lee">Youngsook Lee</name>
<name sortKey="Sohn, Kee Hoon" sort="Sohn, Kee Hoon" uniqKey="Sohn K" first="Kee Hoon" last="Sohn">Kee Hoon Sohn</name>
<name sortKey="Sohn, Kee Hoon" sort="Sohn, Kee Hoon" uniqKey="Sohn K" first="Kee Hoon" last="Sohn">Kee Hoon Sohn</name>
<name sortKey="Yoon, Hwan Su" sort="Yoon, Hwan Su" uniqKey="Yoon H" first="Hwan Su" last="Yoon">Hwan Su Yoon</name>
</country>
<country name="Danemark">
<noRegion>
<name sortKey="Palmgren, Michael" sort="Palmgren, Michael" uniqKey="Palmgren M" first="Michael" last="Palmgren">Michael Palmgren</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000426 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000426 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31828796
   |texte=   Phylogenetic analysis of ABCG subfamily proteins in plants: functional clustering and coevolution with ABCGs of pathogens.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31828796" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024